
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Dual-transformer-based hybrid resonant three-level ZCS converter

A hybrid resonant three-level converter comprised of dual transformers is proposed in this paper, which is suitable for the application of distributed photovoltaic power accessing the medium voltage dc distribution network. The proposed converter can be obtained by adding a control circuit into the traditional neutral point clamped (NPC) three-level (TL) circuit, achieving the basic TL circuit operating with a fixed duty cycle. Pulse width modulation (PWM) is adopted for the control circuit to realize zero current switchings for the basic TL circuit, which delivers most of the power, under full load range. As a result, the switching loss of the converter can be significantly reduced. The influences of the turn ratio of the second transformer and resonant capacitance on the switch current, the peak value of resonant voltage, and the value of the resonant inductance value are discussed in detail, and the parameters design principles are put forward. Finally, a prototype is built to verify the performance of the proposed converter.
- King Saud University Saudi Arabia
- Southeast University China (People's Republic of)
- South China University of Technology China (People's Republic of)
- King Saud University Saudi Arabia
- Southeast University China (People's Republic of)
Zero current switching, Energy Efficiency, Energy Digitalization, Distributed photovoltaic power, Dual-transformer, TK1-9971, DC distribution network, Electrical engineering. Electronics. Nuclear engineering
Zero current switching, Energy Efficiency, Energy Digitalization, Distributed photovoltaic power, Dual-transformer, TK1-9971, DC distribution network, Electrical engineering. Electronics. Nuclear engineering
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).10 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
