
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
4E analyses and multi-objective optimization of a solar-based combined cooling, heating, and power system for residential applications

The purpose of this paper is to propose a novel combined cooling, heating, and power generation system driven by evacuated tube solar collectors for residential applications. Accordingly, evacuated tube collectors are employed to provide sufficient heat for cooling and power generation purposes, while the waste heat of the evacuated tube collectors is then exploited for heating. The proposed system is comprehensively analyzed from various standpoints i.e., energy, exergy, and exergoeconomic. Afterward, the multi-objective genetic algorithm optimization – as a suitable tool – is applied to the system to extract a trade-off between the competing objective functions. The results showed that R124 results in better exergetic efficiency compared to other refrigerants. The parametric study outcomes indicate that with increasing the collector area, total product cost reduces but the total cost rate increases dramatically. The results also show that input parameters can directly affect the exergetic sustainability index to be cautiously designed. The optimization results show that the system’s maximum exergy efficiency is 10.06% while the minimum total cost rate is obtained as 0.4835 $/h. Further, the decision factors’ scatter plots show that LiBr mass fraction should be around 25% for optimal operation. Overall, the proposed system can be employed for cooling, heating, and power generation as a potential cycle.
- University of Tehran Iran (Islamic Republic of)
- University of Sulaymaniyah Iraq
- Sulaimani Polytechnic University Iraq
- Sulaimani Polytechnic University Iraq
- Islamic Azad University of Tabriz Iran (Islamic Republic of)
ERC, ETC, APC, TK1-9971, Evacuated tube solar collector, Multi-objective optimization, Electrical engineering. Electronics. Nuclear engineering
ERC, ETC, APC, TK1-9971, Evacuated tube solar collector, Multi-objective optimization, Electrical engineering. Electronics. Nuclear engineering
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).66 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
