
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Wind power bidding coordinated with energy storage system operation in real-time electricity market: A maximum entropy deep reinforcement learning approach

The wind power forecasting error restricts the benefit of the wind farm in the electricity market. Considering the cooperation of wind power bidding and energy storage system (ESS) operation with uncertainty, this paper proposes a coordinated bidding/operation model for the wind farm to improve its benefits in the electricity market. The maximum entropy based deep reinforcement learning (RL) algorithm, Soft Actor-Critic (SAC) is used to construct the model. The maximum entropy framework enables the designed agent to explore various optimal possibilities, which means the learned coordinated bidding/operation strategy is more stable considering the forecasting error. Particularly, penalty terms are introduced into the benefit function to relax the constraints and improve the convergency. The case study illustrates that the learned policy can effectively improve the wind farm benefit while ensuring robustness.
- Bath Spa University United Kingdom
- Sichuan University China (People's Republic of)
- Sichuan University China (People's Republic of)
- University of Bath United Kingdom
Energy storage system, TK1-9971, Wind farm, Deep RL, Soft actor-critic, Electricity market, Maximum entropy, Electrical engineering. Electronics. Nuclear engineering
Energy storage system, TK1-9971, Wind farm, Deep RL, Soft actor-critic, Electricity market, Maximum entropy, Electrical engineering. Electronics. Nuclear engineering
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).18 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
