
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Self-adapting anti-surge intelligence control and numerical simulation of centrifugal compressors based on RBF neural network

Anti-surge control of centrifugal compressors is an essential issue for the operation of long-distance natural gas pipeline systems. A suitable controller can make a centrifugal compressor runs smoothly and stably and improve the economy. This work presents a new intelligence control strategy with self-adapting ability. The strategy includes the proportional integral (PI) control self-tuned by radial basis function neural network (RBF-NN), recycle trip control, special derivative control, surge line correction, and asymmetric output of the controller. A hybrid numerical simulation platform is built to validate the anti-surge strategy, and a real centrifugal compressor is simulated. The results show that the strategy makes the anti-surge valve respond quickly, decreases the surge control line’s margin and backflow rate, and improves the economy. In the controller, the special derivative control can make the anti-surge valve open earlier and effectively reduce the fluctuating of inlet flow rate. Aiming at the problem that the gradient descent method is more sensitive to the initial value when solving RBF-NN, a hybrid algorithm of k-means, recursive least square, and gradient descent (KRG algorithm) is proposed. It is successfully applied in the anti-surge controller. Even if the given RBF-NN initial parameters are not good enough, the KRG algorithm illustrates good learning stability and increases the adaptive ability of RBF-NN.
- Southeast University China (People's Republic of)
- Southwest Petroleum University China (People's Republic of)
- University of Regina Canada
- PetroChina Southwest Oil and Gas Field Company (China) China (People's Republic of)
- University of Regina Canada
Centrifugal compressor, RBF neural network, Self-adapting, Anti-surge control, Electrical engineering. Electronics. Nuclear engineering, TK1-9971
Centrifugal compressor, RBF neural network, Self-adapting, Anti-surge control, Electrical engineering. Electronics. Nuclear engineering, TK1-9971
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).15 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
