
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Solar energy for liquid wastewater treatment with novel TiO2 supported catalysts

Photocatalytic oxidation is promising technology for removal of recalcitrant pollutants from water. Solar energy can be an interesting radiation source since the operating costs can be lower. However, the use of powder photocatalyst is a major drawback of the technology since suitable separation technologies are required and catalysts recovery is difficult. This work aims to test the suitability of using polymeric supports to immobilize TiO 2 in the reactor and apply it for parabens removal from water by solar photocatalytic oxidation. Polyurethanes (PU) and polydimethylsiloxane (PDMS) membranes were prepared and modified with TiO 2. While PU materials are only able to adsorb (35% in 1 h) parabens whichever the modification applied, modified PDMS was able to promote parabens photocatalytic oxidation removing 20% in 1 h under solar energy. Plasma/UV modification was able to active PDMS membranes (16% of methyl paraben (MP) removal) and further entrapment of TiO 2 in the polymeric matrix did not improve the process (18% of MP removal). Thus, only the superficial TiO 2 was active. Results show that PDMS is suitable material to support TiO 2 aiming photocatalytic wastewater treatment process using the Sun as a clean and renewable energy source.
- University of Belgrade, Faculty of Philosophy Serbia
- University of Belgrade Serbia
- University of Coimbra Portugal
Parabens, Contaminants of emerging concern, TK1-9971, Supported TiO2, Solar energy, Polymeric supports, Electrical engineering. Electronics. Nuclear engineering, Solar photocatalytic oxidation
Parabens, Contaminants of emerging concern, TK1-9971, Supported TiO2, Solar energy, Polymeric supports, Electrical engineering. Electronics. Nuclear engineering, Solar photocatalytic oxidation
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).8 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
