Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energy Reportsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energy Reports
Article . 2022 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energy Reports
Article . 2022
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
OAR@UM
Article . 2022 . Peer-reviewed
Data sources: OAR@UM
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Improved moth flame optimization algorithm based on opposition-based learning and Lévy flight distribution for parameter estimation of solar module

Authors: Abhishek Sharma; Abhinav Sharma; Moshe Averbukh; Shailendra Rajput; Vibhu Jately; Sushabhan Choudhury; Brian Azzopardi;

Improved moth flame optimization algorithm based on opposition-based learning and Lévy flight distribution for parameter estimation of solar module

Abstract

An enhanced version of the moth flame optimization algorithm is proposed in this paper for rapid and precise parameter extraction of solar cells. The proposed OBLVMFO algorithm’s novelty lies primarily in the improved search strategies, where two modifications are proposed to maintain a proper balance between exploration and exploitation. Firstly, an opposition-based learning mechanism is employed to initialize the search population for the purpose of enhancing the global search. Secondly, Lévy flight distribution is used to prevent the stagnation of solutions in local minima. The implementation of intelligent rules such as OBL and Lévy flight distribution significantly improves the performance of the standard MFO. The developed OBLVMFO performed adequately and is reliable in terms of RMSE compared to other methodologies such as MFO, ALO, SCA, MRFO, and WOA. The best optimized value of RMSE achieved by OBLVMFO is 6.060E−04, 1.3600E−05, and 7.0001E−06 for STE 4/100 (polycrystalline), LSM 20 (monocrystalline), and SS2018P (polycrystalline) PV modules, respectively. The experiments performed on the benchmark test function revealed that the OBLVMFO has a 61% faster convergence speed than the standard version of MFO, which improves solution accuracy. In addition to this, two non-parametric tests: Friedman ranking and Wilcoxon rank sum are performed for the validation.

Country
Malta
Keywords

Solar cells, Lévy flight, OBLVMFO, MFO, Photovoltaic power generation, Renewable energy sources, TK1-9971, Parameter optimization, OBL, Electrical engineering. Electronics. Nuclear engineering

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    31
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
31
Top 10%
Top 10%
Top 10%
Green
gold