Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energy Reportsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energy Reports
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energy Reports
Article . 2022
Data sources: DOAJ
https://dx.doi.org/10.60692/rm...
Other literature type . 2022
Data sources: Datacite
https://dx.doi.org/10.60692/4h...
Other literature type . 2022
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Examining the relationship between gas channel dimensions of a polymer electrolyte membrane fuel cell with two-phase flow dynamics in a flooding situation using the volume of fluid method

فحص العلاقة بين أبعاد قناة الغاز لخلية وقود غشاء البوليمر المنحل بالكهرباء مع ديناميكيات التدفق على مرحلتين في حالة الفيضان باستخدام طريقة حجم السائل
Authors: Yan Cao; M.A. El‐Shorbagy; Mahidzal Dahari; Dao Nam Cao; ElSayed M. Tag El Din; Phat Huy Huynh; Makatar Wae-hayee;

Examining the relationship between gas channel dimensions of a polymer electrolyte membrane fuel cell with two-phase flow dynamics in a flooding situation using the volume of fluid method

Abstract

Des structures liquides telles que des gouttelettes et des limaces existent à l'intérieur des canaux de gaz des piles à combustible à électrolyte polymère dans des applications à basse température. L'efficacité de ces dispositifs électrochimiques dépend de l'élimination efficace de l'eau produite. Les spécifications des canaux de gaz telles que la géométrie de la section, les angles d'angle et les propriétés de mouillabilité de la surface contrôlent sensiblement le processus d'élimination du liquide. Ici, cinq canaux avec différentes géométries de section sont modélisés et le processus de décharge liquide-slug est étudié en utilisant une méthode de volume transitoire de fluide. Le modèle numérique se compose d'un segment du canal de gaz côté cathode avec les conditions de fonctionnement d'une pile à combustible opérationnelle. Les simulations dynamiques d'écoulement en deux phases montrent que les canaux avec une largeur et une hauteur plus petites aboutissent à une distribution d'écoulement appropriée à l'alimentation en gaz. Un canal avec des dimensions de section de 0,5 mm × 0,5 mm entraîne un dégagement GDL (Gas-Diffusion Layer) 35,18 % plus rapide, une expulsion de liquide 29,32 % plus rapide par rapport à d'autres canaux ayant des dimensions 2 à 3 fois plus élevées. Par conséquent, ce canal est recommandé comme la meilleure conception pour améliorer les performances de la pile à combustible.

Existen estructuras líquidas como gotitas y babosas dentro de los canales de gas de las celdas de combustible de electrolito polimérico en aplicaciones de baja temperatura. La eficiencia de estos dispositivos electroquímicos depende de la eliminación efectiva del agua producida. Las especificaciones de los canales de gas, como la geometría de la sección, los ángulos de las esquinas y las propiedades de humectabilidad de la superficie, controlan sustancialmente el proceso de eliminación de Aquí, se modelan cinco canales con varias geometrías de sección y se investiga el proceso de descarga de líquido-obstáculo utilizando un método de volumen transitorio de fluido. El modelo numérico consiste en un segmento del canal de gas del lado del cátodo con las condiciones de trabajo de una celda de combustible operativa. Las simulaciones dinámicas de flujo de dos fases muestran que los canales con menor ancho y altura resultan en una distribución adecuada del flujo en la alimentación de gas. Un canal con las dimensiones de sección de 0.5 mm × 0.5 mm da como resultado un aclaramiento de GDL (capa de difusión de gas) un 35.18% más rápido, una expulsión de líquido un 29.32% más rápida en comparación con otros canales que tienen dimensiones 2–3 veces más altas. Por lo tanto, este canal se recomienda como el mejor diseño para mejorar el rendimiento de la pila de combustible.

Liquid structures such as droplets and slugs exist inside gas channels of polymer electrolyte fuel cells in low-temperature applications. The efficiency of these electrochemical devices depends on the effective removal of the produced water. The gas channels' specifications like section geometry, corner angles, and surface wettability properties substantially control the liquid removal process. Here, five channels with various section geometries are modeled and the liquid-slug discharge process is investigated using a transient volume of fluid method. The numerical model consists of a segment of the cathode-side gas channel with the working conditions of an operational fuel cell. The dynamic two-phase flow simulations show that channels with smaller width and height eventuate in proper flow distribution at the gas feed. A channel with the sectional dimensions of 0.5 mm × 0.5 mm results in. 35.18% faster GDL (Gas-Diffusion Layer) clearance, 29.32% faster liquid expulsion compared to other channels having 2–3 times higher dimensions. Therefore, this channel is recommended as the best design for improved fuel cell performance.

توجد الهياكل السائلة مثل القطرات والرخويات داخل قنوات الغاز لخلايا وقود البوليمر المنحل بالكهرباء في تطبيقات درجات الحرارة المنخفضة. تعتمد كفاءة هذه الأجهزة الكهروكيميائية على الإزالة الفعالة للمياه المنتجة. تتحكم مواصفات قنوات الغاز مثل هندسة القسم وزوايا الزاوية وخصائص قابلية الترطيب السطحية بشكل كبير في عملية إزالة السائل. هنا، يتم نمذجة خمس قنوات ذات أشكال هندسية مختلفة ويتم فحص عملية تفريغ الشظية السائلة باستخدام حجم عابر من طريقة السوائل. يتكون النموذج العددي من جزء من قناة غاز جانب الكاثود مع ظروف عمل خلية وقود تشغيلية. تُظهر محاكاة التدفق الديناميكي ثنائي المرحلة أن القنوات ذات العرض والارتفاع الأصغر تحدث في توزيع التدفق المناسب عند تغذية الغاز. تؤدي القناة ذات الأبعاد المقطعية 0.5 مم × 0.5 مم إلى خلوص GDL (طبقة انتشار الغاز) أسرع بنسبة 35.18 ٪، وطرد سائل أسرع بنسبة 29.32 ٪ مقارنة بالقنوات الأخرى ذات الأبعاد الأعلى 2–3 مرات. لذلك، يوصى باستخدام هذه القناة كأفضل تصميم لتحسين أداء خلية الوقود.

Country
Malaysia
Keywords

Electrode, Wetting, Tortuosity, Biochemistry, Diffusion, Engineering, Control volume, Electrolyte, Materials Chemistry, Fuel cells, Volume of fluid method, Energy, Volumetric flow rate, Physics, Membrane, 600, Fuel Cell Technology, Chemistry, Physical chemistry, Physical Sciences, Cathode, Thermodynamics, Electrical engineering. Electronics. Nuclear engineering, CFD, Flow (mathematics), Porosity, Composite material, Volume (thermodynamics), Solid Oxide Fuel Cells, Materials Science, Mechanics, Two-phase flow, TK Electrical engineering. Electronics Nuclear engineering, Chemical engineering, Fluid dynamics, Water flooding, FOS: Electrical engineering, electronic engineering, information engineering, Electrical and Electronic Engineering, Polymer electrolyte membrane, FOS: Chemical engineering, Liquid slug, Renewable Energy, Sustainability and the Environment, Proton exchange membrane fuel cell, Cathode gas channels, Gaseous diffusion, Polymer Electrolyte Membranes, Materials science, TK1-9971, Channel (broadcasting), Fuel Cell Membrane Technology, Electrical engineering, Water Splitting, Electrocatalysis for Energy Conversion

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    10
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
10
Top 10%
Average
Top 10%
gold