Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energy Reportsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energy Reports
Article . 2022 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energy Reports
Article . 2022
Data sources: DOAJ
versions View all 2 versions
addClaim

Modelling of annual sunlight availability on vertical shelves: A case study in Thailand

Authors: orcid Chatchawan Chaichana;
Chatchawan Chaichana
ORCID
Harvested from ORCID Public Data File

Chatchawan Chaichana in OpenAIRE
orcid Ar Man;
Ar Man
ORCID
Harvested from ORCID Public Data File

Ar Man in OpenAIRE
orcid Suwimon Wicharuck;
Suwimon Wicharuck
ORCID
Harvested from ORCID Public Data File

Suwimon Wicharuck in OpenAIRE
orcid Yuttana Mona;
Yuttana Mona
ORCID
Harvested from ORCID Public Data File

Yuttana Mona in OpenAIRE
orcid Damrongsak Rinchumphu;
Damrongsak Rinchumphu
ORCID
Harvested from ORCID Public Data File

Damrongsak Rinchumphu in OpenAIRE

Modelling of annual sunlight availability on vertical shelves: A case study in Thailand

Abstract

Limited cultivation areas in major cities have led to the possibility of vertical farming (the practice of growing crops in vertically stacked layers). However, one of the drawbacks of vertical farming is the limited availability of solar energy at the lower shelves. This study presents a model for predicting the annual sunlight availability on vertical shelves. The model uses the shelf’s structure, orientation, hourly solar radiation, and sunshine duration as inputs to Rhinoceros 3D or RHINO (a 3D computer graphics and computer-aided design application software with the Grasshopper plug-in). The calculated solar energy available at each level of the shelves from RHINO was converted to photosynthetic photon flux density (PPFD) and daily light integral (DLI) using spreadsheet software. This study investigated a vertical farm, in Chiang Mai, Thailand, with six parallel shelves at 1-meter spacing. Each shelf contained three levels with a spacing of 0.5 meters. Both north–south and east–west orientations were investigated. The model could predict PPFD and DLI at every level on the considered shelves. The north–south orientation provided uniform PPFD and DLI throughout the year. The top level of the shelves experiences the highest PPFD (1,949.86μmol*m-2*s-1) and DLI (36.80 mol*m-2*day-1). The PPFD and DLI values at the middle and bottom level were approximately 60% and 50% of the values at the top level, respectively. This information can be used for cultivation planning when considering vertical farming in urban areas. This study provides a sustainable means for future food production.

Related Organizations
Keywords

Vertical farming, Sunlight availability, TK1-9971, Urban farming, Sustainability, Food production, Electrical engineering. Electronics. Nuclear engineering

Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Top 10%
Average
Top 10%
gold