Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energy Reportsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energy Reports
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energy Reports
Article . 2023
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Multi-objective optimizations and multi-criteria assessments for a nanofluid-aided geothermal PV hybrid system

Authors: Zhengguang Liu; Xiaohu Yang; Hafiz Muhammad Ali; Ran Liu; Jinyue Yan;

Multi-objective optimizations and multi-criteria assessments for a nanofluid-aided geothermal PV hybrid system

Abstract

Energy transition has brought widespread attentions to the concept of coupled utilization of the geothermal and solar energy. This paper provides an integrated assessment on developing a nanofluid geothermal-photovoltaic hybrid system that addresses the multi-objective optimization and multi-criteria evaluation difficulties. The coupling system design and dispatch are optimized by considering the multiple objectives from the microscopic particles to the system. The life cycle cost, levelized cost of energy, levelized cost of heat, and the irreversibility are introduced in the optimization stage. The optimization parameters include the pipe arrangement, type of nanoparticles, and the concentration of the nanoparticles in nanofluids. A combined analysis including the energy, exergy, economy, and the environment is proposed to evaluate the various objectives and cases. The results show that the combination of 2% Al2O3 nanofluid and spiral pipe has the optimum performance. The monocrystalline solar panels with the nanofluids-aided heat pump create the least CO2 emissions (550 kg/year), the least LCOE (198.18 $), and the highest exergy efficiency. However, the LCOH (211.78 $/MWh) is still much high. Only when the electricity cost is higher than 0.11$/kWh, the proposed coupling system would show competitiveness. In summary, these results effectively prove the robustness and superiority of the hybrid system.

Related Organizations
Keywords

Photovoltaic-ground source heat pump, Geothermal-photovoltaic system, TK1-9971, Nanofluids, Multi-objective optimization, 4E analysis, Electrical engineering. Electronics. Nuclear engineering

Powered by OpenAIRE graph
Found an issue? Give us feedback