Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao European Journal of ...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
European Journal of Operational Research
Article . 2020 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Modeling the emission trading scheme from an agent-based perspective: System dynamics emerging from firms’ coordination among abatement options

Authors: Song-min Yu; Wolfgang Eichhammer; Wolfgang Eichhammer; Ying Fan; Lei Zhu;

Modeling the emission trading scheme from an agent-based perspective: System dynamics emerging from firms’ coordination among abatement options

Abstract

Abstract Though sharing a similar practice form, the emission trading scheme is distinguished from traditional financial markets: firms coordinate three abatement options at the micro level, including allowance trading, output adjustment, and low-carbon technology adoption. Then, at the macro level, this leads to dynamic interactions among allowance market, output market, and low-carbon technology diffusion. This is the fundamental characteristic of the emission trading scheme, and modeling the dynamics behind is a major difficulty for relevant studies, especially when following complexities are considered: (1) different planning horizons of the three abatement options, (2) heterogeneity among sectors and firms, and (3) details of firms’ production and optional low-carbon technologies. Aiming at this difficulty, we establish an agent-based model for the emission trading scheme, and within a novel multi-level time frame, the fundamental characteristic is reflected and the complexities are considered. Firms’ production and low-carbon technologies are discretely modeled at a process level from a bottom-up perspective, and based on European data, our model is calibrated to cover 5 industrial sectors, 11 emission-intensive products, 25 production processes, and 52 low-carbon technologies. With this model, the emergence properties and uncertainty of the system are captured, and the non-linear impact of the abatement target is reflected and discussed. We find that, after a certain level, higher target leads to lower allowance price uncertainty but stronger output impact, which is a trade-off for setting the abatement target.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    42
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
42
Top 1%
Top 10%
Top 10%
Green
bronze