
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Charge transport properties of cryolite–silica melts

handle: 1807/93904
Abstract Electrodeposition of silicon from a cryolite based electrolyte at a relatively low temperature is a promising approach to generate high purity silicon. In order to obtain fundamental data pertaining to electrowinning of silicon from cryolite–SiO 2 melts, charge transport properties of the melt such as conductivity and electronic and ionic transference numbers were measured. Each property was determined for a range of temperatures and SiO 2 contents. It was found that addition of silica to cryolite generally decreases the transport rate of charge carriers. The temperature on the other hand had a positive effect on the electronic and ionic conductivities. The variations arise from the structural changes in the melt, particularly formation of complex ions involving Na, Si, and Al.
- University of Toronto Canada
transference number, electronic conductivity, ionic conductivity, specific conductivity
transference number, electronic conductivity, ionic conductivity, specific conductivity
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).12 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
