Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Electrochimica Actaarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Electrochimica Acta
Article . 2017 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Measurements of ageing and thermal conductivity in a secondary NMC-hard carbon Li-ion battery and the impact on internal temperature profiles

Authors: Odne Stokke Burheim; Frank Richter; Signe Kjelstrup; Preben J. S. Vie;

Measurements of ageing and thermal conductivity in a secondary NMC-hard carbon Li-ion battery and the impact on internal temperature profiles

Abstract

Abstract The ageing of 75 commercial Li-ion secondary batteries with LiNiMnCoO 2 | hard carbon chemistry was studied up to 4 years. The nominal capacity was 17.5 Ah. The batteries were cycled at different current rates and between different states of charge. Shelf studies were carried out at different temperatures and at different states of charge. The ageing temperature varied from 18-55 °C. The specific ohmic resistance was obtained as a function of state of health, ageing temperature, and ageing time. We found that the cell tolerated less cycles at higher temperatures. The loss of capacity also increased for storage at higher temperatures, in a predictable manner. We observed that the state of charge at the moment of storage was very important for the loss of discharge capacity. Thermal conductivities of pristine and aged electrodes were measured in the presence and absence of electrolyte solvent and under different compaction pressures. The thermal conductivity was found to range from 0.14–0.41 WK −1 m −1 for dry electrode active material and from 0.52–0.73 WK −1 m −1 for electrolyte solvent-soaked electrode active material. The thermal conductivity of the electrode materials did not change significantly with ageing, but a strong correlation was seen between remaining battery capacity and increasing ohmic resistance. To assess the impact of these changes, the measured results were used in a one-dimensional model to compute the battery internal temperature. Temperature profiles were computed as a function of discharging rate (2C - 10C) and ageing time (0 - 4 years). The model showed that the internal temperature can raise by a factor about 2.5 during ageing from the pristine state of health at 100 % to 58 % capacity.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    76
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
76
Top 1%
Top 10%
Top 1%