Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IRIS Cnrarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
CNR ExploRA
Article . 2019
Data sources: CNR ExploRA
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
CNR ExploRA
Article . 2019
Data sources: CNR ExploRA
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Electrochimica Acta
Article . 2019 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 5 versions
addClaim

Elucidation of the interplay between vanadium species and charge-discharge processes in VRFBs by Raman spectroscopy

Authors: Sun; Ca; Vezzù; Ka; bEmail Author; Pagot; Ga; +19 Authors

Elucidation of the interplay between vanadium species and charge-discharge processes in VRFBs by Raman spectroscopy

Abstract

A series of samples are collected from the catholyte solution of a vanadium redox flow battery (VRFB) at different values of state of charge (SoC)/state of discharge (SoD). The samples are analyzed by means of Raman spectroscopy to identify: (i) the species present into the catholyte; and (ii) how the composition of the catholyte is modulated along the charge and discharge processes of the VRFB. Raman results reveal that the most abundant species in the catholye are VO2+ and VO2 +; they are coordinated by HSO4 - and SO4 2- ligands. During the charge process of the VRFB the equilibrium between the vanadium species is shifted towards the formation of an ensemble of V(V) complexes. Instead, during discharge a family of V(IV) species is obtained. The formation of concatenated HV2O5 - and H3V2O7 - species in the catholyte is revealed, which indicates that side electrochemical reactions occur during the charge and discharge processes of a VRFB. The presence of these side reactions plays a crucial role in the modulation of the Coulombic efficiency of the VRFB. This work highlights the complexity of the chemical situation at a VRFB cathode, and the great importance to understand/control such chemical situation to improve the performance of VRFBs in the scenario of electrochemical energy storage field

Country
Italy
Keywords

Raman spectroscopy, Vanadium complexes, Vanadium redox flow battery, Formation equilibria, Raman spectroscopy, Vanadium complexes, Vanadium redox flow battery, Formation equilibria

Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
37
Top 10%
Top 10%
Top 10%