Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energy and Built Env...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energy and Built Environment
Article . 2021 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energy and Built Environment
Article
License: CC BY NC ND
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energy and Built Environment
Article . 2021
Data sources: DOAJ
versions View all 2 versions
addClaim

A review of intensified conditioning of personal micro-environments: Moving closer to the human body

Authors: Bin Yang; Xin Ding; orcid Faming Wang;
Faming Wang
ORCID
Harvested from ORCID Public Data File

Faming Wang in OpenAIRE
Angui Li;

A review of intensified conditioning of personal micro-environments: Moving closer to the human body

Abstract

Various systems and technologies have been developed in recent years to fulfil the growing needs of high-performance HVAC systems with better performance of energy efficiency, thermal comfort, and occupancy health. Intensified conditioning of human occupied areas and less intensified conditioning of surrounding areas are able to effectively improve the overall satisfaction by individual control of personalized micro-environments and also, achieve maximum energy efficiency. Four main concepts have been identified chronologically through the development of personal environmental conditioning, changing the intensified conditioning area closer to the human body and enhancing conditioning efforts, namely the task ambient conditioning (TAC) system, personal environmental control system (PECS), personal comfort system (PCS), and the personal thermal management (PTM) system. This review follows a clue of the concept progress and system evaluation, summarizes important findings and feasible applications, current gaps as well as future research needs.

Related Organizations
Keywords

Building construction, Personal thermal management system, Task ambient conditioning, Environmental technology. Sanitary engineering, Personal environmental control system, TD1-1066, TH1-9745

Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
48
Top 1%
Top 10%
Top 1%
Green
gold