
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Hourly energy consumption characteristics of metro rail transit: Train traction versus station operation

The electricity consumption of the urban metro system can be mainly divided into the following two categories: the electricity consumption for train traction (Et) and the electricity consumption for station operation (Es). Although understanding the hourly fluctuation characteristics of Et and Es contributes to renewable energy integration and achieving carbon emission reduction of the metro system, the hourly fluctuation characteristics have been poorly reported in the literature. Thus, a typical underground non-transfer metro station of a city's metro system in the North China Plain is selected in this study, and Et and Es were monitored to portray their hourly fluctuation characteristics. Results reveal that the hourly Et shows a significant intraday “U” shape on weekdays, indicating two symmetric peaks in morning and evening rush hours. While the hourly Es shows an intraday “flat” shape, indicating it is nearly free from the effect of rush hour. Moreover, it is statistically proved that the train frequency is the core influencing factor resulting in the intraday fluctuation of hourly Et. In the case study, when the train frequency increases from the mean (20 trains per hour) to maximum (32 trains per hour), the hourly Et will increase by 53.4%.
- Tsinghua University China (People's Republic of)
- Xi’an Jiaotong-Liverpool University China (People's Republic of)
- Xi'an Jiaotong University China (People's Republic of)
Hourly fluctuation, Building construction, Environmental technology. Sanitary engineering, Energy consumption, Urban rail transit, Carbon emission reduction, Train traction, Station operation, TD1-1066, TH1-9745
Hourly fluctuation, Building construction, Environmental technology. Sanitary engineering, Energy consumption, Urban rail transit, Carbon emission reduction, Train traction, Station operation, TD1-1066, TH1-9745
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).8 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
