
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
An hourly solar radiation prediction model using eXtreme gradient boosting algorithm with the effect of fog-haze

Hourly global solar radiation data is an important factor for solar energy utilization. Due to the lack of solar radiation observation stations in many areas, some hourly solar radiation models are proposed to predict hourly solar radiation. However, the existing models perform poorly in heavy fog-haze areas because the weakening effect of fog-haze on solar radiation is not considered. Thus, in this paper, hourly global solar radiation prediction models are developed considering air quality index (AQI) using XGBoost algorithm. The results show a general improvement in the accuracy of models with AQI as an additional input (Model B1-B6) compared to models that do not consider AQI (Model A1-A6). Compared to Model A, Model B have an increase in R value from 0.927 to 0.948, a decrease in RMSE value from 0.300 to 0.282 and a decrease in MAPE value from 0.159 to 0.145. In addition, for hourly solar radiation prediction, the six most important inputs are the day of the year, air temperature difference, surface temperature difference, hour, AQI, and total cloud cover.
- Henan University of Science and Technology China (People's Republic of)
- Harbin Institute of Technology China (People's Republic of)
- Xi'an Jiaotong University China (People's Republic of)
- Henan Polytechnic University China (People's Republic of)
- Harbin Institute of Technology China (People's Republic of)
Building construction, Hourly solar radiation, Model accuracy, Air quality index, Environmental technology. Sanitary engineering, Fog-haze, TD1-1066, TH1-9745
Building construction, Hourly solar radiation, Model accuracy, Air quality index, Environmental technology. Sanitary engineering, Fog-haze, TD1-1066, TH1-9745
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).4 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
