
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Potential of emerging glazing technologies for highly glazed buildings in hot arid climates

In order to improve the sustainability of buildings one of the challenges is to address the role of the building envelope as the key climate moderator between the internal and external environments. The envelope is exposed to the elements and needs to control air exchange as well as sunlight and sound passing through to the occupants. Therefore, it has a major impact not only on the energy utilisation within the space it controls but also on the quality of comfort. However, inside highly glazed modern buildings, achieving good comfort is often at the cost of high-energy consumption. Therefore, in the light of ever increasing energy costs, improved facade design can contribute to a reduction of operational costs. The aim of this paper is to explore technical, economic, environmental and indoor comfort implications of emerging glazing technologies for energy control of highly glazed buildings in arid Middle Eastern climates, which is one of the harshest climates for this building type. The work includes predictions through thermal simulation of the impact of electrochromic glazing, holographic optical elements (HOE), aerogel glazing and thin film photovoltaics on two example buildings. Potential reductions in cooling demand are assessed.
- University of Southampton United Kingdom
690, 620
690, 620
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).123 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 1% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
