Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Recolector de Cienci...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Energy and Buildings
Article . 2010 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Life Cycle Assessment of the inclusion of phase change materials (PCM) in experimental buildings

Authors: Luisa F. Cabeza; Melanie Jimenez; Dieter Boer; Marc Medrano; Alvaro de Gracia; Albert Castell; Lídia Rincón;

Life Cycle Assessment of the inclusion of phase change materials (PCM) in experimental buildings

Abstract

The present work evaluates the environmental impact of including phase change materials (PCM) in a typical Mediterranean building. A Life Cycle Assessment (LCA) is developed for three monitored cubicles built in Puigverd de Lleida (Spain). It is possible to control the inner temperature of the cubicles using a domestic heat pump for cooling and an electrical radiator for heating: The energy consumption is registered to determine the energy savings achieved. The aim is to analyze if these energy savings are large enough to balance the environmental impact originated during the manufacturing of PCM. Some hypothetical scenarios, such as different systems to control the temperature different PCM types or different weather conditions are proposed and studied using LCA process to point out the critical issues. Furthermore, a parametric analysis of the lifetime of buildings is developed. Results show that the addition of PCM in the building envelope, although decreasing the energy consumption during operation, does not reduce significantly the global impact throughout the lifetime of the building. For the hypothetical scenario considering summer conditions all year around and a lifetime of the building of 100 years, the use of PCM reduces the overall impact by more than 10%.

Keywords

LCA, PCM, TES

Powered by OpenAIRE graph
Found an issue? Give us feedback