
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Comparative life cycle analysis for green façades and living wall systems

Abstract Greening the building envelope focusing on green facades with vegetation is a good example of a new construction practice. Plants and partly growing materials in case of living wall systems (LWS) have a number of functions that are beneficial, for example: increasing the biodiversity and ecological value, mitigation of urban heat island effect, outdoor and indoor comfort, insulating properties, improvement of air quality and of the social and psychological well being of city dwellers. This paper discusses a comparative life cycle analysis (LCA) situated in The Netherlands for: a conventional built up European brick facade, a facade greened directly, a facade greened indirectly (supported by a steel mesh), a facade covered with a living wall system based on planter boxes and a facade covered with a living wall system based on felt layers. Beside the environmental benefits of the above described greening systems, it is eventually not clear if these systems are sustainable, due to the materials used, maintenance, nutrients and water needed. A LCA is used to analyze the similarity and differences in the environmental impacts in relation with benefits estimated for two climate types for building energy saving (reduction of electrical energy used for building cooling and heating).
- Delft University of Technology Netherlands
- University of Genoa Italy
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).265 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 1% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
