
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
A comprehensive analysis of the impact of occupancy parameters in energy simulation of office buildings

Abstract The commercial building sector has become the focus of many governmental energy reduction initiatives to achieve more sustainable development. Reducing building energy use starts by improving the design of buildings. To this end, energy modeling and simulation tools are used during the design phase to predict energy use and help designers choose and size the different building systems. Large discrepancies are however being observed between predicted and actual building energy performances. In order to determine the sources of errors and improve these predictions, the sensitivity of energy models to different input parameters needs to be evaluated. Studies in literature have extensively evaluated the sensitivity of models to the buildings’ technical design parameters. However, none considered the parameters related to the energy consumption behavior of occupants, leaving their impact on energy modeling unknown. This paper presents a comprehensive sensitivity analysis study performed on the occupancy behavioral parameters of typical office buildings of different size and in different weather zones. Significant sensitivity levels were observed, varying according to both building size and weather conditions. The highest sensitivity was obtained when varying the ‘heating temperature set point’ parameter in small-size buildings located in US weather zone 2 Dry.
- University of Wisconsin–Oshkosh United States
- University of Wisconsin–Oshkosh United States
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).210 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 1% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
