Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy and Buildingsarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Energy and Buildings
Article . 2013 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Gypsum based composite materials with micro-encapsulated PCM: Experimental correlations for thermal properties estimation on the basis of the composition

Authors: TOPPI, TOMMASO; MAZZARELLA, LIVIO;

Gypsum based composite materials with micro-encapsulated PCM: Experimental correlations for thermal properties estimation on the basis of the composition

Abstract

Abstract Composite materials containing phase change materials (PCMs) are obtained by mixing PCM microcapsules with traditional construction materials. The composite materials thermal properties, which depend on the composition, are required when dynamic simulations of building structures containing composite material with PCM are performed. In order to avoid the need of measuring density, thermal conductivity and specific heat capacity for each possible composition, in this work correlations for the estimation of these thermal properties for gypsum based composite materials with micro-encapsulated PCM are derived. The correlations, obtained on the basis of experimental measures, give the composite material thermal properties as function of gypsum, water and PCM mass and volume fractions; it is verified that the correlations for density and thermal conductivity can be applied in the whole temperature range, including both the PCM liquid and solid phases, while a correction based on the temperature is applied for the correlation for specific heat capacity to extend its validity to the phase change temperature range. The correlations fit the experimental data with an error comparable with the measurement uncertainty and, when tested on a commercial product, they are able to predict its thermal properties with good accuracy.

Country
Italy
Related Organizations
Keywords

Micro-encapsulated phase change material, Composite material, Thermal properties, Experimental correlation, Building material, Gypsum

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    68
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
68
Top 10%
Top 10%
Top 10%