
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Regression models for predicting UK office building energy consumption from heating and cooling demands

This paper described the development of regression models which are able to predict office building annual heating, cooling and auxiliary energy requirements for different HVAC systems as a function of office building heating and cooling demands. In order to represent the office building stock, a large number of building parameters were explored such as built forms, fabrics, glazing levels and orientation. Selected parameters were combined into a large set of office building models (3840 in total). As different HVAC systems have different energy requirements when responding to same building demands, each of the 3840 models were further coupled with five HVAC systems: VAV, CAV, fan-coil system with dedicated air (FC), and two chilled ceiling systems with dedicated air, radiator heating and either embedded pipes (EMB) or exposed aluminium panels (ALU). In total 23,040 possible scenarios were created and simulated using EnergyPlus software. The annual heating and cooling demands and their HVAC system's heating, cooling and auxiliary energy requirements were normalised per floor area and fitted to two groups of statistical models. Outputs from the regression analysis were evaluated by inspecting models best fit parameter values and goodness of fit. Based on the described analysis, the specific regression models were recommended.
- University College London United Kingdom
- De Montfort University United Kingdom
Parameters, UK office buildings, Regression models, Energy performance, HVAC systems
Parameters, UK office buildings, Regression models, Energy performance, HVAC systems
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).97 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
