Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy and Buildingsarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Energy and Buildings
Article . 2013 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Use of Coandă nozzles for double glazed façades forced ventilation

Authors: P. Alavedra; Carme Valero; Alfredo Guardo; Eduard Egusquiza; David Valentin;

Use of Coandă nozzles for double glazed façades forced ventilation

Abstract

a b s t r a c t Fans are the most widespread system used to implement forced convection ventilation for double glazed facades (DGF). However, the implementation of fans in a facade require an electrical supply for the motors, solid supports for the fans, and the installation has to meet fire safety regulations required by local laws. These facts, added to the need of a regular maintenance program for the fans and the possibility of noise and vibration generated by the moving parts of these equipment, might increase the final cost of the facade and reduce the comfort inside the building. In this paper the feasibility of using nozzles for DGF ventilation is evaluated. The nozzles selected for this study are based on the Coand˘ effect. For this investigation, a CFD model was used to simulate a Coand˘ nozzle. The modeled nozzle was simulated for different flow rate conditions and velocity and pressure fields obtained in the nozzle outlet were imposed as an inlet boundary condition in an upper crossed lateral ventilation model for a DGF. Results obtained for heat flux, and reductions in solar gain loads for different operating conditions were obtained and compared against previous results for vertical and horizontal DGF ventilation in a similar geometry.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    13
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
13
Top 10%
Top 10%
Top 10%