Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Recolector de Cienci...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Energy and Buildings
Article . 2013 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Thermal analysis of a ventilated facade with PCM for cooling applications

Authors: Alvaro de Gracia; Luisa F. Cabeza; Albert Castell; Álvaro Ruiz-Pardo; Servando Álvarez; Lidia Navarro;

Thermal analysis of a ventilated facade with PCM for cooling applications

Abstract

Abstract A new type of ventilated facade (VF) with macro-encapsulated phase change material (PCM) in its air cavity is presented in this paper. The thermal performance of this special building envelope is experimentally tested to analyze its potential in reducing the cooling demand during the summer season in the Continental Mediterranean climate. Two identical house-like cubicles located in Puigverd de Lleida (Spain) were monitored during summer 2012, and in one of them, a ventilated facade with PCM was located in the south wall. Six automatized gates were installed at the different openings of the channel in order to control the operational mode of the facade. This versatility allows the system to be used as a cold storage unit, as an overheating protection system or as a night free cooling application. The experimental results point out the night free cooling effect as the most promising operational sequence to reduce the cooling load of the cubicle. On the other hand, the thermal resistance of the outer skin of the facade must be increased; otherwise the cold storage system cannot be used efficiently.

Keywords

Ventilated facade, Buildings, Phase change materials

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    99
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
99
Top 1%
Top 10%
Top 10%