Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy and Buildingsarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Energy and Buildings
Article . 2014 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Quality of grey-box models and identified parameters as function of the accuracy of input and observation signals

Authors: Glenn Reynders; Jan Diriken; Dirk Saelens;

Quality of grey-box models and identified parameters as function of the accuracy of input and observation signals

Abstract

Abstract The integration of buildings in a Smart Grid, enabling demand-side management and thermal storage, requires robust reduced-order building models that allow for the development and evaluation of demand-side management control strategies. To develop such models for existing buildings, with often unknown the thermal properties, data-driven system identification methods are proposed. In this paper, system identification is carried out to identify suitable reduced-order models. Therefore, grey-box models of increasing complexity are identified on results from simulations with a detailed physical model, deployed in the integrated district energy assessment simulation (IDEAS) package in Modelica. Firstly, the robustness of identified grey-box models for day-ahead predictions and simulations of the thermal response of a dwelling, as well as the physical interpretation of the identified parameters, are analyzed. The influence of the identification dataset is quantified, comparing the added value of dedicated identification experiments against identification on data from in use buildings. Secondly, the influence of the data used for identification on model performance and the reliability of the parameter estimates is quantified. Both alternative measurements and the influence of noise on the data are considered.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    160
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
160
Top 1%
Top 1%
Top 10%