
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
PCM thermal energy storage tanks in heat pump system for space cooling

handle: 10459.1/57205
Abstract A heat pump coupled to thermal energy storage (TES) tanks is experimentally tested under simulated summer conditions and the results are presented in this paper. The cold TES tank is used for shifting the cooling load of a small house-like structure. The study evaluates the thermal behaviour of the TES tank for cold storage and the application of the system for space cooling. For the analysis, two different configurations of the tanks are compared: a water tank and a PCM tank. The PCM tank is filled with a commercial macro-encapsulated PCM, which has a phase change temperature of 10 °C. The results point out that the PCM tank is able to supply 14.5% more cold and to maintain the indoor temperature within comfort 20.65% longer than the water tank. However, it needs 4.55 times longer to charge the tank.
- University of Lleida Spain
- University of Lleida Spain
- Canadian Real Estate Association Canada
- Canadian Real Estate Association Canada
Phase change materials (PCM), Thermal energy storage (TES), HVAC, Heat Pump
Phase change materials (PCM), Thermal energy storage (TES), HVAC, Heat Pump
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).104 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
