Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy and Buildingsarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Energy and Buildings
Article . 2015 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Application of multi-objective genetic algorithm to optimize energy efficiency and thermal comfort in building design

Authors: Di Wang; Wei Yu; Baizhan Li; Hongyuan Jia; Ming Zhang;

Application of multi-objective genetic algorithm to optimize energy efficiency and thermal comfort in building design

Abstract

Abstract Several conflicting criteria exist in building design optimization, especially energy consumption and indoor environment thermal performance. This paper presents a novel multi-objective optimization model that can assist designers in green building design. The Pareto solution was used to obtain a set of optimal solutions for building design optimization, and uses an improved multi-objective genetic algorithm (NSGA-II) as a theoretical basis for building design multi-objective optimization model. Based on the simulation data on energy consumption and indoor thermal comfort, the study also used a simulation-based improved back-propagation (BP) network which is optimized by a genetic algorithm (GA) to characterize building behavior, and then establishes a GA–BP network model for rapidly predicting the energy consumption and indoor thermal comfort status of residential buildings; Third, the building design multi-objective optimization model was established by using the GA–BP network as a fitness function of the multi-objective Genetic Algorithm (NSGA-II); Finally, a case study is presented with the aid of the multi-objective approach in which dozens of potential designs are revealed for a typical building design in China, with a wide range of trade-offs between thermal comfort and energy consumption.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    366
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 0.1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
366
Top 0.1%
Top 1%
Top 1%