
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
A modified differential evolution based maximum power point tracker for photovoltaic system under partial shading condition

This work proposes a modified differential evolution (MDE) based maximum power point tracker (MPPT) for photovoltaic (PV) system under partial shading condition. The proposed MDE does not involve any random numbers; hence, consistency of MPP tracking always prevails. Besides, it only contains one tuning parameter, i.e., mutation factor, which significantly simplifies the implementation strategy and therefore a low-cost micro-controller can be used for its realization. Despite the simpler MPPT structure, for each tested shaded curve, MDE always converges toward the global MPP within 12 perturbations. Performance wise, it outperforms another evolutionary algorithm, namely particle swarm optimization (PSO), which frequently traps at local MPP in shading conditions. The proposed MDE also works accurately for the measured data profile of a tropical country during 9.00 am to 5.00 pm, where it attains 99.5% average tracking efficiency.
- Universiti Teknologi MARA Malaysia
- King Abdulaziz University Saudi Arabia
- Universiti Teknologi MARA Malaysia
- Karachi Institute of Economics and Technology Pakistan
- Karachi Institute of Economics and Technology Pakistan
006, TK Electrical engineering. Electronics Nuclear engineering
006, TK Electrical engineering. Electronics Nuclear engineering
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).55 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
