Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy and Buildingsarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Energy and Buildings
Article . 2016 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Simulation-based model predictive control by the multi-objective optimization of building energy performance and thermal comfort

Authors: ASCIONE, FABRIZIO; BIANCO, NICOLA; De Stasio, Claudio; MAURO, GERARDO MARIA; Vanoli, Giuseppe Peter;

Simulation-based model predictive control by the multi-objective optimization of building energy performance and thermal comfort

Abstract

Abstract Efficient HVAC devices are not sufficient to achieve high levels of building energy performance, since the regulation/control strategy plays a fundamental role. This study proposes a simulation-based model predictive control (MPC) procedure, consisting of the multi-objective optimization of operating cost for space conditioning and thermal comfort. The procedure combines EnergyPlus and MATLAB ® , in which a genetic algorithm is implemented. The aim is to optimize the hourly set point temperatures with a day-ahead planning horizon, based on forecasts of weather conditions and occupancy profiles. The outcome is the Pareto front, and thus the set of non-dominated solutions, among which the user can choose according to his comfort needs and economic constraints. The critical issue of huge computational time, typical of simulation-based MPC, is overcome by adopting a reliable minimum run period. The procedure can be integrated in building automation systems for achieving a real-time optimized MPC. The methodology is applied to a multi-zone residential building located in the Italian city of Naples, considering a typical day of the heating season. Compared to a standard control strategy, the proposed MPC generates a reduction of operating cost up to 56%, as well as an improvement of thermal comfort.

Country
Italy
Keywords

Multi-objective optimization, Genetic algorithm, Minimum run period, Building performance simulation, Building performance simulation; EnergyPlus; Genetic algorithm; MATLAB®; Minimum run period; Model predictive control; Multi-objective optimization; Thermal comfort; Civil and Structural Engineering; Building and Construction; Mechanical Engineering; Electrical and Electronic Engineering, Model predictive control, Building performance simulation; Genetic algorithm; Minimum run period; Model predictive control; Multi-objective optimization

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    200
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
200
Top 1%
Top 1%
Top 1%