Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy and Buildingsarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Energy and Buildings
Article . 2016 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The impact of future scenarios on building refurbishment strategies towards plus energy buildings

Authors: Claudiane Ouellet-Plamondon; Claudiane Ouellet-Plamondon; Guillaume Habert; Patrick Kenneally; Alexander Passer; Alexander Passer; Viola John;

The impact of future scenarios on building refurbishment strategies towards plus energy buildings

Abstract

Abstract Buildings account for 40% of total global energy consumption. The International Energy Agency (IEA) and the European Commission (EC) are attempting to achieve an 80% reduction in global emissions by 2050. The objectives of this paper are to identify the refurbishment scenario with the lowest environmental impact using Life Cycle Assessment (LCA) and to assess the scenario’s robustness to future climate change scenarios using a sensitivity analysis. We applied and verified the proposed approach in a residential case study of a reference project located in Kapfernberg, Austria. The environmental assessment included two facade refurbishment proposals (minimum and high quality with respect to energy), onsite energy generation (using solar thermal collectors and photovoltaic (PV) panels), one renewable future energy mix and the effects of climate change according to the Austrian Panel on Climate Change (APCC). The environmental indicators used in the assessment were the cumulative energy demand non-renewable (CED n. ren.), global warming potential (GWP) and ecological scarcity (UBP) over building life cycles. The results indicated that a high-quality refurbishment of the thermal envelope with prefabricated facade elements, including solar thermal collectors and PV panels, represented the optimal refurbishment. In terms of the environmental indicators, the high-quality refurbishment scenario is always beneficial throughout the building’s life cycle. Additionally, the sensitivity analysis of the high-quality refurbishment scenario found an increasing production of surplus electricity with increasing PV area. This surplus of energy provides greater benefit in the short term with the current energy mix. Once the energy from the grid is shifted to renewable sources, the added benefit is decreased. Therefore, it is necessary to find an optimal balance between diminishing returns due to changes in the future energy mix and the financial investment made over the lifetime of the building, especially for plus energy buildings. However the findings from this specific case study need to be evaluated for other refurbishment cases, taking into account future local climate change and energy supply mix scenarios in other regions.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    105
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
105
Top 1%
Top 10%
Top 1%