Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy and Buildingsarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Energy and Buildings
Article . 2016 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Parametric analysis for performance enhancement of phase change materials in naturally ventilated buildings

Authors: Ramakrishnan, Sayanthan; Wang, Xiaoming; Alam, Morshed; Sanjayan, Jay; Wilson, John;

Parametric analysis for performance enhancement of phase change materials in naturally ventilated buildings

Abstract

Abstract This paper presents a design optimization related to the application of phase change materials within buildings, which aims to maximize the utilization of latent heat capacity to improve indoor thermal comfort during summer season. Two performance indicators are developed: efficiency coefficient (a representation of the effective utilization of latent heat storage capacity) and effectiveness coefficient (a representation of improvement of indoor thermal comfort). A series of parameters which influence the efficiency coefficient and effectiveness coefficient are identified and then formulated to quantify those coefficients for optimal design. With the performance indicators defined, a case study is performed in a typical standard Australian residential house to derive the optimized design of PCM refurbishment utilizing the developed performance indicators. Results reveal that the performance indicators are effective in the selection of optimum PCM configurations so that the resultant PCM storage efficiency and indoor thermal comfort are optimized. This is particularly demonstrated by the significant enhancement of storage efficiency and effectiveness of optimized PCM compared to non-optimized cases for each climate conditions. Furthermore, an optimized PCM condition is found to be more cost-effective than the non-optimized conditions.

Country
Australia
Keywords

621

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    65
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
65
Top 1%
Top 10%
Top 10%