Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy and Buildingsarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Energy and Buildings
Article . 2016 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Laboratory measurement of thermal distribution throughout the insulation materials using the Peltier module while managing elimination of external influences

Authors: Anna Antonyová; Peter Antony; Azra Korjenic;

Laboratory measurement of thermal distribution throughout the insulation materials using the Peltier module while managing elimination of external influences

Abstract

Abstract Testing of the actual properties of insulation materials is usually connected with the actual situation when measurement realization requires suitable weather conditions, for instance the winter time. The previous research [6] , in which measurements of polystyrene were conducted, was testing its thermal properties under actual conditions every 30 min, being directly dependent on the building environment where the insulation material was tested. Laboratory simulation of the actual application on the outside of the building to test the thermal properties of insulation materials can circumvent the dependency on the actual environmental conditions during the experiment. Here the actual thermal conductivity through the material of a specific thickness was tested using a new experimental measuring method. The method is based on generating an outside temperature of −18 °C using the Peltier module on one side of the block-shaped piece of insulation material. The methodology also enables testing of the internal thermal behavior of the material with the proper thickness as well as the shape of the material. The research results are especially useful when deciding on the effective thickness of the building’s insulating material; using statistical methods. The analytical expression of the insulation properties inside the material would also serve for that purpose.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Top 10%
Average
Average