Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy and Buildingsarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Energy and Buildings
Article . 2017 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A method for distinguishing appliance, lighting and plug load profiles from electricity ‘smart meter’ datasets

Authors: Dane George; Lukas G. Swan;

A method for distinguishing appliance, lighting and plug load profiles from electricity ‘smart meter’ datasets

Abstract

Abstract In the Canadian residential sector, the end-uses of appliances, lighting, and plug loads (ALP) account for 16% of total end-use energy consumption. In an effort to reduce the impacts of this energy consumption, electricity technologies such as solar photovoltaics and smart appliances are being adopted. Evaluation of their performance requires an understanding of residential electricity use patterns. Building simulation tools can estimate the time-step performance of such technologies, but require accurate and representative ALP electricity profiles as an input. Sub-metered datasets lack in quantity and thus overall representativeness of the sector. Meanwhile, large, representative datasets are becoming available through electricity smart-metering programs, but usually consist only of whole-house electricity load and lack summary household characteristics (e.g. occupancy, floor space, appliance descriptions). However, homes which are not electrically heated (space, water) or cooled may function as ALP load profiles for simulation. This research addresses these loads with a new method of distinguishing non-electrically heated and cooled homes from a broad dataset of whole-house profiles. The method originates from a comparison of two electricity load datasets: (i) “smart-meter” 15-min time-step whole-house data for 160 homes spanning three years, and (ii) “sub-metered” 1-min time-step data for 23 residential homes. This comparison also speaks to the usefulness of whole-house electricity smart-meter information to building performance simulation.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    16
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
16
Top 10%
Top 10%
Average