
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
k-Shape clustering algorithm for building energy usage patterns analysis and forecasting model accuracy improvement

Abstract Clustering algorithms have been successfully applied in analyzing building energy consumption data. It has proven to be an effective technique to identify representative energy consumption patterns as well as being a pre-processing step for other techniques. In this paper, we propose a clustering method based on k-shape algorithm, which is a relatively novel method to identify shape patterns in time-series data. In the experiment, clustering is performed for each individual building according to its hourly consumption. The novelty of this paper is that a new k-shape algorithm is applied to detect building-energy usage patterns at different levels, and the clustering result is further utilized to improve the accuracy of forecasting models. Ten institutional buildings covering three different typologies are used as case studies and a set of hourly and weekly energy consumption data is further analyzed in this paper. The experimental results reveal that this proposed method can detect building energy usage patterns in different time granularity effectively and also proves that the forecasting accuracy of SVR model is significantly improved by utilizing the results of the proposed clustering method.
- National University of Singapore Singapore
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).163 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 1% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
