Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Flore (Florence Rese...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Energy and Buildings
Article . 2017 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Energy and Buildings
Article . 2017 . Peer-reviewed
http://dx.doi.org/10.1016/j.en...
Article
License: Elsevier TDM
Data sources: Sygma
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Optimization of roof solar reflectance under different climate conditions, occupancy, building configuration and energy systems

Authors: PISELLI, CRISTINA; Saffari, Mohammad; de Gracia, Alvaro; PISELLO, ANNA LAURA; COTANA, Franco; Cabeza, Luisa F.;

Optimization of roof solar reflectance under different climate conditions, occupancy, building configuration and energy systems

Abstract

Abstract Cool roofs have been widely proved to represent an effective strategy for building thermal-energy performance improvement during the cooling season. However, their effectiveness along the whole year can be affected by building features and other boundary conditions. The present work aims at assessing the energy performance of high solar reflectance roof solutions in different climate zones, when implemented in a variety of building typologies. Therefore, an optimization study was carried out to select the optimum roof solar reflectance able to minimize building annual HVAC energy consumption. In this work, Italian climate zones were considered as case study conditions. The analysis was performed through dynamic simulation of validated standard ASHRAE building reference models. Moreover, the role of (i) type of HVAC system operating, (ii) presence and intensity of internal gains, and (iii) roof thermal insulation level was evaluated on the resulting optimum roof reflectance capability. Results show that the optimum roof solar reflectance varies under different climate conditions, mainly depending on heating or cooling dominated conditions. However, all further analyzed boundary conditions, i.e. building typology, HVAC system, internal gains, and roof insulation level, affect building energy performance and, therefore, the optimum roof reflectance identification. In the hottest climate, the optimum roof solar reflectance resulted to be consistently equal to the maximum considered, i.e. 0.8, also with varying the other parameters. Moreover, the annual HVAC energy need is more sensitive to roof reflectance in the apartment building, showing 17% of energy savings with standard model characteristics. On the other hand, in heating dominated climates, the optimum roof solar reflectance is more variable, ranging over all the considered values, because it is affected by the additional boundary conditions. On the contrary, the variability of HVAC need due to roof solar reflectance variation is generally lower.

Country
Italy
Keywords

Cool roof; Solar reflectance; Energy savings; Optimization; EnergyPlus simulation; GenOpt

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    32
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
32
Top 10%
Top 10%
Top 10%