
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
IEA EBC Annex 67 Energy Flexible Buildings

handle: 10278/3709701
The increasing global energy demand, the foreseen reduction of available fossil fuels and the increasing evidence off global warming during the last decades have generated a high interest in renewable energy sources. However, renewable energy sources, such as wind and solar power, have an intrinsic variability that can seriously affect the stability of the energy system if they account for a high percentage of the total generation. The Energy Flexibility of buildings is commonly suggested as part of the solution to alleviate some of the upcoming challenges in the future demand-respond energy systems (electrical, district heating and gas grids). Buildings can supply flexibility services in different ways, e.g. utilization of thermal mass, adjustability of HVAC system use (e.g. heating/cooling/ventilation), charging of electric vehicles, and shifting of plug-loads. However, there is currently no overview or insight into how much Energy Flexibility different building may be able to offer to the future energy systems in the sense of avoiding excess energy production, increase the stability of the energy networks, minimize congestion problems, enhance the efficiency and cost effectiveness of the future energy networks. Therefore, there is a need for increasing knowledge on and demonstration of the Energy Flexibility buildings can provide to energy networks. At the same time, there is a need for identifying critical aspects and possible solutions to manage this Energy Flexibility, while maintaining the comfort of the occupants and minimizing the use of non-renewable energy. In this context, the IEA (International Energy Agency) EBC (Energy in Buildings and Communities program) Annex 67: “Energy Flexible Buildings” was started in 2015. The article presents the background and the work plan of IEA EBC Annex 67 as well as already obtained results. Annex 67 is a corporation between participants from 16 countries: Austria, Belgium, Canada, China, Denmark, Finland, France, Germany, Ireland, Italy, The Netherlands, Norway, Portugal, Spain, Switzerland and UK.
- KU Leuven Belgium
- Aalborg University Denmark
- Katholieke Universiteit Leuven Belgium
- Ca Foscari University of Venice Italy
- Danish Technological Institute Denmark
Demand response, Flexibility indicators, Load control, Demand side management, Smart Energy Networks, Energy Flexible Buildings, Demand response; Demand side management; Energy Flexible Buildings; Flexibility indicators; Load control; Smart Energy Networks; Civil and Structural Engineering; Building and Construction; Mechanical Engineering; Electrical and Electronic Engineering
Demand response, Flexibility indicators, Load control, Demand side management, Smart Energy Networks, Energy Flexible Buildings, Demand response; Demand side management; Energy Flexible Buildings; Flexibility indicators; Load control; Smart Energy Networks; Civil and Structural Engineering; Building and Construction; Mechanical Engineering; Electrical and Electronic Engineering
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).345 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 0.1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 1% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 0.1%
