Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy and Buildingsarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Energy and Buildings
Article . 2018 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Enhancing the performance of a zeolite 13X/CaCl2–water adsorption cooling system by improving adsorber design and operation sequence

Authors: Chan, Ka Chung MAE; Tso, Chi Yan; Wu, Chili; Chao, Christopher Y H;

Enhancing the performance of a zeolite 13X/CaCl2–water adsorption cooling system by improving adsorber design and operation sequence

Abstract

Abstract In this study, a compact dual adsorber adsorption cooling system (ACS) prototype was built using the zeolite 13X/CaCl2 composite adsorbent with water as the adsorbate. The adsorbers were constructed by directly coating the composite adsorbent on parallel flow finned heat exchangers to enhance the heat and mass transfer performance. The compactness of the ACS is of great concern for use in buildings, where space is always limited. Through a better adsorber design, the specific cooling power (SCP) is largely improved from 106 W/kg to 377 W/kg (256% improvement) under the same desorption temperature, 85 °C, and chilled water inlet temperature, 14 °C, even though the cooling water temperature is increased from 22 °C to 28 °C. Besides, four different operation sequences, namely basic cycle, mass recovery cycle, pre-heating & pre-cooling cycle, and mass recovery with pre-heating & pre-cooling cycle, were studied to optimize the system performance. It is found that performing the pre-heating & pre-cooling cycle can further increase the SCP to 401 W/kg. This promising result shows that the ACS has potential to be installed in buildings to achieve the goals of heating/cooling energy saving.

Related Organizations
Keywords

Adsorption cooling systems, 621, Operation sequence, Adsorber design, Composite adsorbent

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    39
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
39
Top 10%
Top 10%
Top 10%