Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy and Buildingsarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Energy and Buildings
Article . 2018 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Linking building energy consumption with occupants’ energy-consuming behaviors in commercial buildings: Non-intrusive occupant load monitoring (NIOLM)

Authors: Hamed Nabizadeh Rafsanjani; Changbum R. Ahn; Jiayu Chen;

Linking building energy consumption with occupants’ energy-consuming behaviors in commercial buildings: Non-intrusive occupant load monitoring (NIOLM)

Abstract

Abstract Occupants’ energy-consuming behaviors have a significant influence on overall energy consumption in commercial buildings. Accordingly, understanding and intervening in these behaviors offers a significant opportunity for energy savings in commercial buildings. Current approaches to behavior modification rely on available occupant-specific energy consumption data, but capturing such data is generally expensive. One possible solution to this challenge is to link energy consumption to individual occupants’ energy-use behaviors in commercial buildings. In this context, this study proposes a non-intrusive occupant load monitoring (NIOLM) approach that couples occupancy-sensing data—captured from existing Wi-Fi infrastructures—with power changes in aggregate building-wide energy data to thereby disaggregate building-wide data down to the individual. This paper describes two case studies that investigate the feasibility of using the NIOLM approach to identify occupant-specific energy consumption information. Tracking eleven occupants’ energy-use behaviors using NIOLM over a four-month period resulted in an average F-measure of 0.778 and Accuracy of 0.955. The case studies thereby demonstrated that NIOLM successfully tracks individual occupants’ energy-consuming behaviors at minimal cost by utilizing existing high-resolution metering devices and Wi-Fi network infrastructures in commercial buildings.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    52
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
52
Top 10%
Top 10%
Top 10%