Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ COREarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
CORE
Article . 2018
License: CC BY NC ND
Data sources: CORE
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energy and Buildings
Article
License: CC BY NC ND
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Energy and Buildings
Article . 2018 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 8 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

An open-source simulation platform to support the formulation of housing stock decarbonisation strategies

Authors: Darren Robinson; Parham A. Mirzaei; Gustavo Sousa; Gustavo Sousa; Benjamin M. Jones;

An open-source simulation platform to support the formulation of housing stock decarbonisation strategies

Abstract

Housing Stock Energy Models (HSEMs) play a determinant role in the study of strategies to decarbonise the UK housing stock. Over the past three decades, a range of national HSEMs have been developed and deployed to estimate the energy demand of the 27 million dwellings that comprise the UK housing stock. However, despite ongoing improvements in the fidelity of both modelling strategies and calibration data, their longevity, usability and reliability have been compromised by a lack of modularity and openness in the underlying algorithms and calibration data sets. To address these shortfalls, a new open and modular platform for the dynamic simulation of national (in the first instance, the UK) housing stocks has been developed—the Energy Hub (EnHub). This paper describes EnHub’s architecture, its underlying rationale, the datasets it employs, its current scope, examples of its application, and plans for its further development. In this we pay particular attention to the systematic identification of housing archetypes and their corresponding attributes to represent the stock. The scenarios we analyse in our initial applications of EnHub, based on these archetypes, focus on improvements to housing fabric, the efficiency of lights and appliances and of the related behavioural practices of their users. In this we consider a perfect uptake scenario and a conditional (partial) uptake scenario. Results from the disaggregation of energy use throughout the stock for the baseline case and for our scenarios indicate that improvements to solid wall and loft thermal performance are particularly effective, as are reductions in infiltration. Improvements in lights and appliances and reductions in the intensity of their use are largely counteracted by increases in heating demand. Housing archetypes that offer the greatest potential savings are apartments and detached dwellings, owing to their relatively high surface area to volume ratio; in particular for pre-1919 and inter-war epochs.

Country
United Kingdom
Keywords

Open-source, Housing stock, Dynamic energy simulation, Modularity, Policy support

Powered by OpenAIRE graph
Found an issue? Give us feedback