Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Repositório Instituc...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Energy and Buildings
Article . 2019 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Generation and assessment of local climatic data from numerical meteorological codes for calibration of building energy models

Authors: Silvero, Fabiana; LOPS, CAMILLA; Montelpare, Sergio; Rodrigues, Fernanda;

Generation and assessment of local climatic data from numerical meteorological codes for calibration of building energy models

Abstract

Abstract The assessment of building energy performance through dynamic simulations has been increasing significantly in recent years since it represents a key strategy for the correct design of highly efficient buildings. Results of dynamic energy simulations are affected by many uncertainties, and its reliability depends on the accuracy of the input variables. One of the most influential variables is the climate surrounding the building, a reason why the use of accurate weather data files is essential, but experimental datasets are not always available. In this context, this paper analyses numerical weather datasets obtained from different regional climate models by comparing them with real data; in addition, it evaluates their impact on the energy performance of a historical building in Asuncion through dynamic simulations. The database of five different weather data sources is compared with observed meteorological data in order to assess their accuracy through statistical analyses. Moreover, some methodologies to estimate diffused and direct components of the global solar radiation are evaluated, with the objective of solving the problem of missing direct and diffused solar data components from the meteorological codes. Subsequently, weather data files are generated to quantify the influence of measured/simulated meteorological data on the evaluation of building energy performance. The results obtained in this paper show that the simulated meteorological data agree very well with real observations for the year under study. Also, the simulations of the building energy performance delivered similar values to those obtained using the real weather dataset. Therefore, the regional climate models can represent a reliable tool for building energy performance assessment, and mainly for the calibration of building energy models when measured weather data is not available.

Countries
Portugal, Italy
Keywords

Buildings energy simulation, Thermal comfort, Building energy demand, Weather files, Building energy demand; Buildings energy simulation; Regional climate models; Thermal comfort; Weather files; Civil and Structural Engineering; Building and Construction; Mechanical Engineering; Electrical and Electronic Engineering, Regional climate models

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    19
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
19
Top 10%
Average
Top 10%
Green