Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy and Buildingsarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Energy and Buildings
Article . 2019 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Comprehensive analysis of the performance and intrinsic energy losses of centralized Domestic Hot Water (DHW) systems in commercial (educational) buildings

Authors: Thomas Kitzberger; David Kilian; Jan Kotik; Tobias Pröll;

Comprehensive analysis of the performance and intrinsic energy losses of centralized Domestic Hot Water (DHW) systems in commercial (educational) buildings

Abstract

Abstract The energy demand for supplying Domestic Hot Water (DHW) has an important share in the overall thermal energy consumption of commercial buildings. The aim of this paper is to analyze the performance of DHW production in commercial public service, i.e., educational buildings, to subsequently identify frequent inherent shortcomings of centralised DHW installations and to provide measures for optimization or economically more viable solutions. Several buildings of the University of Natural Resources and Life Sciences in Vienna have been investigated in terms of DHW consumption and performance of the installed centralised systems. Referring to the investigated university buildings, it can be stated, that in cases of low to medium consumption figures, typical centralized DHW installations with a hot water circulation pipework achieve only poor efficiencies in the range of 2–12%. As for one particular centralized DHW system in operation, focusing on demand controlled DHW supply through adapted flow control, e.g., reducing the runtime of the circulating pumps at specific time intervals, and, if applicable and feasible, decreasing hot water flow- and storage capacities can reduce annual energy consumption for DHW by 15–25% and improve the overall system efficiency significantly as could be evaluated in a detailed case study. A seemingly economical yet ecologically controversial option for improving centralised DHW systems is the partial or complete conversion to electric point-of-use water heaters. This reduces thermal energy losses almost completely, hereby significantly increasing the efficiency of a DHW supply system. Nevertheless, existing hot water supply systems, energized by district heating, usually consume less primary energy and most likely generate fewer CO2 emissions compared to electric DHW heaters.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    20
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
20
Top 10%
Top 10%
Top 10%