Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energy and Buildingsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Energy and Buildings
Article . 2019 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
VBN
Article . 2019
Data sources: VBN
Energy and Buildings
Article . 2019 . Peer-reviewed
http://dx.doi.org/10.1016/j.en...
Article
License: Elsevier TDM
Data sources: Sygma
versions View all 7 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The effects of wind-driven rain on the hygrothermal conditions behind wooden beam ends and at the interfaces between internal insulation and existing solid masonry

Authors: Hansen, Tessa Kvist; Bjarløv, Søren Peter; Peuhkuri, Ruut;

The effects of wind-driven rain on the hygrothermal conditions behind wooden beam ends and at the interfaces between internal insulation and existing solid masonry

Abstract

An inevitable measure when energy retrofitting historic buildings in Europe, is the reduction of building envelope heat loss. On preservation-worthy facades where external insulation is not an option, installation of internal insulation is gaining pace. The historic buildings in Denmark are often constructed with solid masonry facades and wooden decks. The internal insulation may, however, entail potential hygrothermal risks in walls and embedded wood. Measures such as vapour barriers and capillary active insulation materials are continuously evolving and the subject of much current research. The hygrothermal conditions are of great importance for the durability of the building constructions, and for the health and wellbeing of occupants. Wind-driven rain (WDR) is a central factor contributing to water penetration and moisture loads of the exterior walls. Numerous studies have shown that WDR loads influence the moisture conditions in masonry walls and embedded wooden beams, and can even affect interior relative humidity. In the present paper WDR loads on existing façades in a cold temperate climate were determined by measurements and compared to a semi-empirical model. Simultaneously, the hygrothermal conditions within internally insulated walls with exposed brick and embedded wooden beams were monitored. Furthermore, numerical simulations were implemented for clarification of WDR impact. Hygrothermal simulations and previous studies, inevitably show that high WDR loads result in higher moisture content behind the interior insulation. Results from the field measurements of WDR however, cannot directly be referred to the moisture content measured in walls behind interior insulation or beam ends. However, fluctuations in external air humidity proved to be influential on condiditons in the construction. Implementation of a semi-empirical model for calculations of WDR agreed with previous studies in predictions being too conservative when compared to measured WDR.

Country
Denmark
Keywords

Moisture transport, In situ measurements, in situ measurements, internal insulation, Wind-driven rain, Internal insulation, wind-driven rain, moisture transport, Hygrothermal performance

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    25
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
25
Top 10%
Top 10%
Top 10%
Green
bronze