Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy and Buildingsarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Energy and Buildings
Article . 2019 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Experimental short-term investigation of model predictive heat pump control in residential buildings

Authors: Sebastian Kuboth; Theresa Weith; Florian Heberle; Andreas König-Haagen; Dieter Brüggemann; Matthias Welzl;

Experimental short-term investigation of model predictive heat pump control in residential buildings

Abstract

Abstract This study investigates the potential of model predictive heat pump control in detached houses in terms of electric energy consumption, thermal comfort and photovoltaic energy self-consumption. Two comparable test rigs with identical devices are set up. The test rigs include electrical air source heat pumps with variable compressor speed, thermal energy storages and heat dissipation by heat exchangers. The heat demand is controlled by valves, which are coupled to real-time simulation of building models in compliance with the principle of energy conservation. Measurements confirm test rig comparability. After introducing the model predictive control (MPC) concept, a successive series of six measurements of 120 h each within the heating season is presented. The model predictive heat pump controller is evaluated by comparison to a standard heat pump controller implemented into the reference test rig. Results show an average increase of the heat pump coefficient of performance of 22.2%, an average increase of 234.8% in terms of photovoltaic energy self-consumption as well as a resulting average heat pump operational cost reduction of 34.0% by application of MPC.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    34
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
34
Top 10%
Top 10%
Top 10%