Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy and Buildingsarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Energy and Buildings
Article . 2020 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Nonconstant enthalpy of thermosetting solid-solid phase change materials controlled by light

Authors: Weibo Kong; Xiaowei Fu; Yi Wang; Liang Jiang; Ye Yuan; Bo Wu; Zhimeng Liu; +1 Authors

Nonconstant enthalpy of thermosetting solid-solid phase change materials controlled by light

Abstract

Abstract Phase change materials (PCMs) based on the principle of latent heat thermal energy storage have been highly concerned by researchers and widely developed in various fields. However, for traditional PCMs, especially thermosetting solid-solid change materials (SSPCMs) which usually consist of crosslinking structure, the phase change enthalpy was fixed once the materials were constructed. To turn the constant enthalpy into adjustable one, we incorporated the light-sensitive methyl red (MR) groups into polyurethane-based SSPCMs. The MR-containing SSPCMs exhibit amplified enthalpy and increased melting temperature (Tm) after activated by UV light compared with the inactivated ones. UV treatment can promote the crystallization of the soft segment in polyurethane due to the light-induced isomerization of MR groups and visible light causes reverse effect of the activated samples that the enthalpy, Tm and crystallization get back to the original degree, which indicates the nonconstant enthalpy. A separation theory was proposed to explain the increased enthalpy and Tm caused by the cis configuration of MR groups.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Top 10%
Average
Top 10%