Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Recolector de Cienci...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Energy and Buildings
Article . 2020 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
RIARTE
Article . 2020
License: CC BY NC ND
Data sources: RIARTE
versions View all 9 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A comparative life cycle assessment (LCA) of different insulation materials for buildings in the continental Mediterranean climate

Authors: Llantoy Huamán, Noelia Karin; Chàfer, Marta; Cabeza, Luisa F.;

A comparative life cycle assessment (LCA) of different insulation materials for buildings in the continental Mediterranean climate

Abstract

The construction industry is one of the less sustainable activities on the planet, constituting 40% of the total energy demand and approximately 44% of the total material use and the generation of 40–50% of the global output of greenhouse gases. The biggest environmental impact caused by buildings is generated during their operational phase due to the energy consumption for thermal conditioning. Hence, in order to reduce this energy consumption, insulation materials must be used and from a life-cycle perspective, the use of insulation materials reduces the building impact over time. This paper develops a comparative life cycle assessment (LCA) of different insulation materials (polyurethane, extruded polystyrene, and mineral wool) to analyse the environmental profile of each insulation material type in the Mediterranean continental climate. Significantly, all three insulation materials demonstrated a net positive benefit over a fifty-year life span due to the reduced heating requirements of the building. Results showed that the highest environmental impact was associated with the polystyrene insulation material and the best environmental performance was for the mineral wool. Moreover, regarding the consumption, polyurethane and mineral wool had similar thermal performance during the whole year. Furthermore, the environmental payback period shows that the cubicles with insulation material are environmentally efficient, if they are used for at least 7 years (for mineral wool), 10 years (polyurethane), and 12 years (extruded polystyrene). The results of this research give new insights into the effect on building insulation materials. © 2020 Elsevier B.V.

Country
Spain
Keywords

Impacto medioambiental, ReCiPe, Aislamiento térmico, Ciclo de vida de edificación, Paises mediterráneos, 2304.20 Poliestireno, Environmental impact, Lana mineral, GWP, Poliuretano, 3308.04 Ingeniería de la Contaminación, Rendimiento térmico, Insulation materials, Gestión ambiental, Thermal performance, 3305.90 Transmisión de Calor en la Edificación, 3305.14 Viviendas, 3308.07 Eliminación de Residuos, Países mediterráneos, Poliestireno expandido (EPS), Life cycle assessment (LCA), Poliestireno Extruido

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    106
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
106
Top 1%
Top 10%
Top 1%
Green