Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy and Buildingsarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Energy and Buildings
Article . 2021 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Canopy contribution to the energy balance of a building’s roof

Authors: Leopold Škerget; João Almeida; António Tadeu; Nuno Simões;

Canopy contribution to the energy balance of a building’s roof

Abstract

Abstract Green roofs are complex systems governed by intricate transport phenomena, which are frequently solved using simplified and empirical models. This paper describes a numerical model capable of solving the conservation equations that govern the unsteady nonlinear coupled moisture and heat energy transport through a multi-layer green roof composed of a structural support, a water storage layer, growing medium and canopy. To get an accurate insight into the role of different variables that affect the hygrothermal behaviour of green roofs, the temperature on the outer surface, as well as the outflow and inflow heat fluxes, were computed for different roof models and environmental conditions. A sensitivity analysis was performed to understand the role of the different layers and the canopy’s geometrical composition (e.g. vegetation coverage, plant height and leaf area index) in the energy balance of the building’s roof. Finally, to foresee the behaviour of the full canopy system under real climate conditions, weather data with distinct climatic characteristics from Braganca (Portugal) and Seville (Spain) were used. The simulated green roofs use insulation cork boards (ICBs) to replace both the water storage and insulation layers. Due to the intrinsic thermal characteristics of ICB (an ICB layer of 0.2 m allowed us to reduce the heat flux by about 58% compared with an ICB layer of 0.05 m), these roofs are expected to improve interior comfort and save energy. Although the ICB and soil layers made the greatest contribution to the thermal insulation, the characteristics of the vegetation were found to be of substantial importance to the overall performance of the green roof. The leaf area index (LAI) was the most relevant vegetation variable (a change from LAI = 2 to LAI = 5 decreased the inflow heat flux by about 27%), while difference in plant height did not lead to any significant change in inflow heat flux.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    8
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
8
Top 10%
Average
Top 10%