
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Current and future coating technologies for architectural glazing applications

handle: 11589/262751
Abstract This paper presents a comprehensive review of the current state-of-the-art coating technologies for glazing applications. The main objective is to collect and present current commercially available technologies on today's market and future research prototypes to identify the most promising coating technologies. Several static coating technologies with fixed optical properties are compared, including low emissivity, electrothermal and photothermal coatings. Low-E coatings are the current industry standard and have almost reached their full energy-saving potential. Hence, electrothermal coatings that convert electricity to heat by the Joule effect are discussed, together with their limitations of needed power supply. To overcome these issues, photothermal coatings have been proposed to improve the glazing thermal performance by absorption of ultra-violet and near-infrared radiation. On the other hand, dynamic coatings can modulate solar gains by switching between clear and tinted states in response to external stimuli. Electrochromic and gasochromic coatings are still limited by high costs. In comparison, photochromic and thermochromic coatings are more accessible and less complex passive technologies, although photochromic coatings are still hindered by low bleaching rates and poor cyclic stabilities. In comparison, thermochromic coatings are more mature, especially those based on vanadium dioxide. This review shows that both static and dynamic technologies thrive to enhance optical and thermal performances while providing an opportunity for the realization of durable next-generation dynamic windows. In particular, the development of passive dynamic hybrid photo-thermochromic coatings seems the most promising trajectory.
- Polytechnic University of Bari Italy
- Ryerson University Canada
- Ryerson University Canada
- Polytechnic University of Bari Italy
Adaptive facades; Advanced glazing; Energy efficiency; Nanomaterials; Smart windows; Solar modulation; Thin film
Adaptive facades; Advanced glazing; Energy efficiency; Nanomaterials; Smart windows; Solar modulation; Thin film
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).88 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
