Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy and Buildingsarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Energy and Buildings
Article . 2021 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A novel short-term load forecasting framework based on time-series clustering and early classification algorithm

Authors: Zhe Chen; Yongbao Chen; Tong Xiao; Huilong Wang; Pengwei Hou;

A novel short-term load forecasting framework based on time-series clustering and early classification algorithm

Abstract

Abstract With the development of data-driven models, extracting information from historical data for better energy forecasting is critically important for energy planning and optimization in buildings. Feature engineering is a key factor in improving the performance of forecasting models. Adding load pattern labels for different daily energy consumption patterns resulting from different time schedules and weather conditions can help improve forecasting accuracy. Traditionally, pattern labeling focuses mainly on finding a day similar to the forecasting day based on calendar or other information, such as weather conditions. The most intuitive approach for dividing historical time-series load into patterns is clustering; however, the pattern cannot be determined before the load is known. To address this problem, this study proposes a novel short-term load forecasting framework integrating an early classification algorithm that uses a stochastic algorithm to predetermine the load pattern of a forecasting day. In addition, a hybrid multistep method combining the strengths of single-step forecasting and recursive multistep forecasting is integrated into the framework. The proposed framework was validated through a case study using actual metered data. The results demonstrate that the early classification and proposed labeling strategy produce satisfactory forecasting accuracy and significantly improve the forecasting performance of the LightGBM model.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    54
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
54
Top 1%
Top 10%
Top 1%