Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ University of Califo...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Energy and Buildings
Article . 2021 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Passive cooling designs to improve heat resilience of homes in underserved and vulnerable communities

Authors: Kaiyu Sun; Wanni Zhang; Zhaoyun Zeng; Ronnen Levinson; Max Wei; Tianzhen Hong;

Passive cooling designs to improve heat resilience of homes in underserved and vulnerable communities

Abstract

Abstract Disadvantaged communities face a growing threat to staying safe during heat waves, especially during coincident power outages. This study develops a methodology to evaluate the effectiveness of passive cooling measures (those that operate without power) to improve residential building heat resilience. Building performance is simulated for representative homes and on district scales in two disadvantaged communities in Fresno, California. Eleven passive measures are evaluated using four heat resilience metrics with and without grid power. Results show performance of the mitigation measures varies by building characteristics, surrounding environment, and power scenario. The two most effective measures were installing solar-control window films and adding roof insulation. For pre-1978 single-family homes, these two measures can reduce unmet degree-hours (UDH) indoors by 12% and 11% respectively without grid power, or 28% and 37% with grid power. Their respective UDH reductions at district scale typically range 8% — 20% and 4% — 12% without grid power, or 14% — 44% and 8% — 51% with grid power. Top floors have higher overheating risk than lower floors during extreme heat events with coincident power outages. Natural ventilation can help, reducing UDH by 21% — 26%. The methodology and findings from this study can help cities, communities, and utilities develop effective and targeted strategies to promote greater residential heat resilience.

Country
United States
Keywords

690, Occupant health, 333, Vulnerable community, Heat wave, Engineering, Sustainable Cities and Communities, Power outage, Heat resilience, Architecture, Underserved community, Building & Construction, Built environment and design, Residential building, 720, Occupant safety, 620, Health Disparities, Fresno California, Built Environment and Design, Passive measures

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    49
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
49
Top 10%
Top 10%
Top 1%
Green
bronze