
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
The coffee-house: Upcycling spent coffee grounds for the production of green geopolymeric architectural energy-saving products

handle: 20.500.14243/520530 , 10447/582995
This study investigates a possible alternative reuse of spent coffee grounds (SCG), the major residue of the brewing process, to manufacture green geopolymeric materials for innovative building applications in energy-saving construction, in line with the European Green Deal towards zero-energy building. Specimens were prepared by a combination of biomass fly ash from the Kraft paper-pulp process, as raw material (70 wt%), and SCG (up to 17.5 %), as filler. The high amount of reused bio-wastes makes the material fit the requirements for the Minimum Environmental Criteria (MEC) certification, in light of the Circular Economy (CE) approach. Sustainability is also boosted by the manufacturing process that completely occurred at ambient conditions (20 °C, 65 % RH). Materials engineering performance is evaluated to predict possible applications in construction and promote an integrated architectural design process to propose a “coffee-house” equipped with an innovative energy structure and envelope. For the scope, different technological solutions are designed and virtual energy modelling is implemented to simulate the performance of a building model in different climatic conditions and estimate the possible real efficacy of the proposed solutions in relation to building efficiency and cost management, as envisaged by the EU 2018/844 on the buildings’ energy performance. The major result is that the developed material represents an optimum candidate to substitute traditional construction and building materials with a great manufacturing financial saving, up to 37 % for the 17.5 % SCG, and an energy improvement up to about 19 % per year, leading further saving in the yearly building management.
- University of Aveiro Portugal
- Institute of Nanotechnology United Kingdom
- National Research Council Italy
- University of Palermo Italy
- Energy and Resources Institute India
Biomass fly ash, Thermo-plaster, Bio-composite geopolymer, Thermo-plaster, Thermo-brick, Spent coffee ground, Biomass fly ash, Cost-analysis, Virtual energy simulation, Thermo-brick, Virtual energy simulation, Bio-composite geopolymer, Cost-analysis, Spent coffee ground
Biomass fly ash, Thermo-plaster, Bio-composite geopolymer, Thermo-plaster, Thermo-brick, Spent coffee ground, Biomass fly ash, Cost-analysis, Virtual energy simulation, Thermo-brick, Virtual energy simulation, Bio-composite geopolymer, Cost-analysis, Spent coffee ground
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).13 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
